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Dynamical models based on three steady-state equations for the law of effect were constructed under the
assumption that behavior changes in proportion to the difference between current behavior and the
equilibrium implied by current reinforcer rates. A comparison of dynamical models showed that a
model based on Navakatikyan’s (2007) two-component functions law-of-effect equations performed
better than models based on Herrnstein’s (1970) and Davison and Hunter’s (1976) equations.
Navakatikyan’s model successfully described the behavioral dynamics in schedules with negative-slope
feedback functions, concurrent variable-ratio schedules, Vaughan’s (1981) melioration experiment, and
experiments that arranged equal, and constant-ratio unequal, local reinforcer rates.
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_______________________________________________________________________________

Once behavior stabilizes, we say it has
reached a steady state, or equilibrium. When
the environment changes, behavior undergoes
dynamical changes in time as it moves toward a
new steady state. Most of the existing quanti-
tative laws of effect describe how behavior
relates to reinforcers at the steady state. The
purpose of this article is to assess whether
dynamical models of data from experiments
that have studied how behavior changes over
time can help us to choose among competing
steady-state equations of the law of effect
(LOE).

Navakatikyan (2007) proposed a component-
functions model of choice behavior as an
alternative to Herrnstein’s (1970) quantitative
law of effect. The predictions of the model
compared favorably with molar models based
on equations offered by Davison and Hunter
(1976), McDowell (1986), Stevens (1957) and
Herrnstein (1970) in describing residence-
time data in interdependent concurrent vari-
able-interval (VI) VI schedules (Alsop & Elliffe,
1988; Elliffe & Alsop, 1996). Navakatikyan’s
model described the way that the generalized
matching law sensitivity parameter a (Baum,
1974) changed as a function of overall
reinforcer rate (Alsop & Elliffe; Elliffe &
Alsop). One of features of the model is that

it allows for matching, undermatching, and
overmatching in the same subject to occur as a
by-product of orderly changes in the absolute
values of residence time.

In present article, we continue to explore
Navakatikyan’s (2007) LOE equations by ap-
plying them to some dynamical data that, in
our view, have been insufficiently modeled, or
which allow for alternative interpretations. We
will compare the dynamical models based on
the Navakatikyan’s LOE equations with models
based on the two best-competing LOE equa-
tions that were identified by Navakatikyan: the
equations proposed by Herrnstein (1970) and
by Davison and Hunter (1976).

The dynamical data in question are from:
(a) concurrent VI VI schedules with negative-
slope feedback functions (Vaughan & Miller,
1984); (b) concurrent variable-ratio (VR) VR
schedules (Herrnstein & Loveland, 1975;
Mazur, 1992; Mazur & Ratti, 1991); (c)
concurrent VI VI schedules with complex
feedback functions used to test melioration
theory (Herrnstein, 1982; Herrnstein &
Vaughan, 1980; Vaughan, 1981); (d) experi-
ments with equal (Herrnstein & Vaughan;
Vaughan, 1982), and (e) constant-ratio un-
equal local reinforcer rates (Horner and
Staddon, 1987; Staddon, 1988). Not all of
these reports contain full dynamical informa-
tion. Some data are represented only by the
resulting steady-state behavior, sometimes av-
eraged across subjects; nevertheless, these data
will be used to choose between the three LOE-
based models by investigating whether dynam-
ical models based on these can in principle
reach the stable states reported in these
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experiments. Most of the data are from
concurrent schedules, as the treatment of a
choice constitutes the major difference be-
tween Navakatikyan’s (2007), Herrnstein’s
(1970), and Davison and Hunter’s (1976)
LOE equations.

In this introduction, we will describe (a) our
approach to dynamical modeling; (b) the
principal differences between different LOE
equations; (c) the datasets; and (d) the data
analyses.

DYNAMICAL MODELS BASED ON
STEADY-STATE EQUATIONS

General Structure of Dynamical Model

In this section, we describe an approach to
combining an LOE equation and a feedback
function into a dynamical model, and assess
the resulting dynamical models from two
perspectives: how well the model fits the data,
and whether the model has the equilibrium
properties observed in the reported data.

We were influenced by the following con-
siderations in developing the present ap-
proach: If we know the state of behavior at a
particular moment, and we know what the
final steady state that will eventually be
reached, we can approximate a graph of the
change in a behavioral measure over time as
the behavior approaches the final steady state.
The final steady state of behavior is the
behavior predicted by a steady-state LOE
equation for a given reinforcer rate. We can
assume that behavior changes towards the
steady state in some proportion to the differ-
ence between current state of behavior and a
steady state corresponding to the current
reinforcer rate. The modeling done here is
purely descriptive, rather than mechanistic.
Below is a formal description of this process.

A general LOE equation (or a set of
equations associated with a set of choice
alternatives) for steady-state behavior (B) as a
function of reinforcer rate (R) is:

B~f (R): ð1Þ

There exist some underlying differential equa-
tions with respect to time dB/dt 5 F(R).
Currently, we do not know their nature, or
they are so complicated, or there are so many
of them (e.g., Dragoi & Staddon, 1999), that
an analytical approach is difficult. In this case,

we can use linearization, that is, an assumption
that a system changes in linear proportion to
the deviation from a steady state. Thus, we can
write the following difference equation to
predict behavior after some short time step
(Dt) and to build a behavioral trajectory step-
by-step:

B�iz1~B�i zkt(B{B�i ):Dt, ð2Þ

where B*i+1and B*i are the next and current
value of behavior, respectively; B is behavior at
the steady state calculated from Equation 1
using R, the current obtained reinforcer rate;
kt is a dynamic constant, which is a fraction of
(B - Bi*) that changes per unit of time and is
measured generally in min21; and Dt is the
time step in seconds. Equation 2 says that
change in behavior is directly proportional to
the difference between current and steady-
state behavior. Equation 2 works like this:
Steady state is attained when current behavior
B* reaches the value of B, so (B - B i*) becomes
zero, and no further change of B* occurs.
When B* . B, (B - B i*) is negative, that is, B*
decreases with time until it is equal to B. If
B* , B, (B - Bi*) is positive, that is, B* increases
until it equals B. Though linearization is most
accurate near the stable state, it also allows
insight into the behavior of a system that is far
from equilibrium.

It is important to bear in mind that R also
changes with a change of B*, as they are
related by some feedback function:

R~g (B�), ð3Þ

where g is a feedback function of B*.
An LOE equation (Equation 1), a feedback

function (Equation 3), and a dynamical
Equation 2 form the general structure of the
dynamical model considered here. The block
diagram for modeling, and an example for a
single-key fixed ratio (FR) schedule using
Herrnstein’s (1970) LOE equation, are given
in Figure 1. We start with some initial value of
behavior at time zero. Then, according to
Equation 3, we calculate reinforcer rate R,
related to current behavior. In this case
Equation 3 is R 5 B/N, where N is the number
of fixed-ratio responses required. Then, we
calculate the value of a steady state behavior B
by an LOE equation (Equation 1), and the
change of behavior for the current step, that is,
DB 5 kt(B 2 B*i)Dt. Finally, from Equation 2,
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the next value of behavior, or B*i+1, is found,
and the process is repeated until a stable state
is reached, or a predefined number of steps
have been completed. When there is a two-
alternative schedule, the same scheme is
applied to each alternative and the model is
built around values of B1* and B2*, B1 and B2,
R1 and R2 for two alternatives. The models
constructed in this way will be dynamic models
based on Herrnstein’s (1970), Davison and
Hunter’s (1976), and Navakatikyan’s (2007)
LOE equations (see next section).

Equilibrium Analysis

Special points in the analyses are the
equilibrium points of the models. Though we
use LOE equations, or equilibrium solutions,
these constitute only general solutions without
feedback functions. Here, we will be looking
for equilibria in the dynamical models that
include feedback functions.

Most important for our analysis is the
presence of stable and unstable equilibria in
the model (see, for example, Staddon, 1988,
pp. 304–305). A stable equilibrium attracts
behavior; deviations of behavior from a stable
equilibrium, at least within some range, are
temporary, and behavior returns to equilibri-
um. An unstable equilibrium repels behavior;
a small change in behavior drives the behavior
further away. Water on different surfaces
provides a good illustration. Water in a pool
is in stable equilibrium, water on a top of
mountain is in unstable equilibrium. Water on
the mountain slope is not in equilibrium
state—it runs down the slope. Trajectories of
a behavioral measure in time converge to a
stable equilibrium and diverge from an unsta-
ble equilibrium.

In case of two-alternative schedules, we have
two response measures for each of two
alternatives (B1 and B2). It is usual to analyze
such system with a phase portrait. Phase is a state
of the system and, in the present case, a state is
a pair of B1 and B2, or it is a point on a plane
with axes B1 and B2. Such a plane is called a
phase plane. A phase portrait is a geometric
representation of the trajectories of a dynam-
ical system in the phase plane.

Trajectories are lines along which a system
moves through time and can be quite complex
if all three dimensions of the behavior (B1, B2,
and time) are represented (upper left panel of
Figure 2). If we omit the time dimension, we
obtain a phase portrait, where the trajectories
will show only B1 and B2, and the direction of
system over time can be shown by arrows
(upper right panel of Figure 2). The useful-
ness of the phase portrait is that all trajectories
are unique and cannot intersect. Thus, we
need only to plot a few major trajectories to
characterize a dynamical system qualitatively,
as neighboring trajectories converge or di-
verge from the same equilibrium in a geomet-
rically similar way. Trajectories start with some
initial values of the system, but at whatever
point a system starts, it cannot leave that
trajectory. Again, as seen in upper panels of
Figure 2, trajectories can converge to a stable
equilibrium, shown by the filled circle, and
trajectories can diverge from unstable equilib-
rium marked by the unfilled circle. We cannot
assess how much time is required to move
along trajectories in phase portraits, but we
can understand the order of the consecutive

Fig. 1. Example of a dynamical model based on
Equations 1 to 3. Upper panel: General block-diagram of
a model. Middle and lower panels: Obtained reinforcer
rate and response rates for performance in FR single-
response schedules. The initial value of response rate was
30 responses per min. The feedback function for obtained
reinforcer rate is R 5 FR/B*, where FR is the ratio
requirement which was initially 60, and was changed to 30
at the 30th minute of the session. B* is the current
response rate. The LOE here is Herrnstein’s (1970)
hyperbolic function B 5 BmaxR/(R+k), where Bmax 5 60
responses per min, k 5 20 (rfrs/hr). Dynamic constant kt

5 0.05 min21, and the time step is 1 min.
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states. Once equilibrium is reached, a system
can stay at it so long as the conditions remain
constant. The lower left panel of Figure 2
shows time graphs of the response rates from a
trajectory marked by a bold line in the upper
panels, which starts at B1 5 30, B2 5 170. After
about 300 minutes an equilibrium state is
reached, and the further dynamics can be
seen in time graphs only. The lower right
panel of Figure 2 shows a preference trajectory
related to the response rates shown in the
lower left panel of Figure 2. We can see that
exclusive preference was reached both from
the phase portrait and from the preference
graph.

Figure 3 shows examples of arbitrary equi-
libria in the phase plane. A stable equilibrium

is usually identified by trajectories converging
to it (left panel of Figure 3), while an unstable
equilibrium has trajectories diverging from it
in different directions (left panel of Figure 3).
A particular type of unstable equilibrium,
called a saddle, can mimic a stable one having
some trajectories that initially approach it, but
eventually move away (right panel of Fig-
ure 3). Using the same example of water on
different surfaces, water on a saddle-shaped
mountain flows from the top to the ridge, as if
attracted by a stable equilibrium, but it cannot
remain there and flows further down in
another direction.

We will investigate the location and type of
equilibria using a number of different tech-
niques: (a) analytically, by solving Equations 1

Fig. 2. Examples of equilibrium analysis graphs. Upper left panel: Trajectories of behavior in three-dimensional
space, with time and response rates on two alternatives represented. Upper right panel: A phase portrait of a dynamical
system with response rates on two alternatives. Lower left panel: Time graphs of response rates of the trajectory drawn
with a bold line in upper panels. Lower right panel: Time graph for preference for the same trajectory drawn with a bold
line in the upper panels. Time direction is indicated by arrows. The stable equilibrium is shown by a filled circle; the
single unstable equilibrium is shown by an unfilled circle.
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and 3 simultaneously under the condition that
at equilibrium B 5 B*; (b) graphically, by
finding the intersections of feedback functions
and various LOE equations, which is possible
for a single-key procedure; and more frequent-
ly (c) by analyzing time graphs and phase
portraits that do not have a time coordinate.

We are not concerned with finding analytic
solutions to differential equations. We will
assess the LOE equations in terms of their
viability as descriptors of steady-state respond-
ing using goodness of fit and Bayesian
information criteria (BIC) for their dynamic
models; and also by analyzing the types of
equilibria in the dynamic model and its
corresponding data.

COMPETING EQUATIONS FOR THE
STEADY-STATE LAW OF EFFECT

Three molar LOE equations were investigat-
ed: Herrnstein’s (1961, 1970) equation; one of
Davison and Hunter’s (1976) equations, and
one of Navakatikyan’s (2007) equations.

Herrnstein’s (1970) and Davison and Hunter’s
(1976) LOE Models: Competitive Inhibition by
Other Reinforcers

Herrnstein’s (1970) equation is related to
the body of research on matching reported over
the last 40 years. It is called the strict matching
law, and is the steady-state solution for the
process known as melioration (Herrnstein, 1982;
Herrnstein & Vaughan, 1980; Vaughan, 1981).
Davison and Hunter’s (1976) equation reduces
to the generalized matching law (Baum, 1979;
see also Lander & Irwin, 1968; Staddon, 1968).

Herrnstein’s (1970) and Davison and Hunt-
er’s (1976) equations are based on the
matching (or generalized matching) principle,
in which the total amount of behavior (Herrn-
stein, 1974) is distributed according to the
proportion of reinforcers obtained by emitting
a behavior. Herrnstein’s equation states that
the absolute rate of responding on an alterna-
tive in a choice is proportional to its associated
relative reinforcer rate (Herrnstein, 1970):

B1~Bmax
R1

(
Pn
i~1

Ri)zk
, ð4Þ

where B is responses per min, R is the absolute
rate of reinforcers per min; Bmax is a constant
(Herrnstein’s k), representing ‘‘the total
amount of behavior generated by all the
reinforcements operating on the subject at a
given time’’ (Herrnstein, 1974, p. 161), or the
maximum overall response rate; k is a constant
(Herrnstein’s R0), originally representing the
unknown aggregated reinforcers for responses
unaccounted for in the summation in the
denominator; and i is an index that covers all
alternative responses measured in the situa-
tion. The constant k influences how fast the
response rate increases with reinforcer rate
increase—the smaller k, the faster the re-
sponse rate change. Here, we interpret the
constant k as a general free parameter consis-
tent with the interpretations of Killeen (1982,
1994), Staddon (1977) and Navakatikyan
(2007), rather than as an aggregated reinforc-
er rate for nonmeasured responses.

For single-key schedules of reinforcement,
Equation 4 is a hyperbola:

Fig. 3. Depictions of equilibria in phase portraits. Left panel, stable equilibrium; Middle and right panel, unstable
equilibria. Right panel shows a saddle. Stable equilibria are shown by filled circles, unstable equilibria by unfilled circles.

DYNAMICS OF THE LAW OF EFFECT 95



B~BmaxR=(Rzk): ð5Þ

For concurrent two-alternative schedules,
Herrnstein’s (1970) set of LOE equations for
each choice alternative are shown here (Equa-
tions 6 and 7) with addition of reinforcer bias c
(as used in generalized matching) scaling R1:

B1~(BmaxcR1)=(cR1zR2zk), ð6Þ

B2~(BmaxR2)=(cR1zR2zk), ð7Þ

where the Subscripts 1 and 2 denote the first
and the second alternatives.

Davison and Hunter (1976) suggested a
range of steady-state LOE equations related to
generalized matching equations. Navakatikyan
(2007) found the best-performing of Davison
and Hunter’s equations was:

B1~Bmax
Ra

1Pn
1

(Ra
i )zk

, ð8Þ

where a is a sensitivity parameter. For single-
key schedules of reinforcement, Equation 8
becomes:

B~BmaxRa=(Razk), ð9Þ

And, for two-alternative concurrent schedule
performance, with addition of bias:

B1~Bmax(cR1)a=((cR1)azRa
2 zk); ð10Þ

B2~BmaxRa
2 =((cR1)azRa

2 zk): ð11Þ

One of the theoretical justifications for
Herrnstein’s (1970) LOE equation was an
analogy drawn with Michaelis-Menten kinetics
of substrate-enzyme, or drug-cell receptor
reaction (Heyman, 1988; Killeen, 1982, 1994;
Staddon, 1977). This type of equation consid-
ers that the number of randomly emitted
responses is proportional to the time available
to emit responses, and to the reinforcer rate.
The time available is, in turn, limited by
emitted responses, as each response takes
some time. A simple hyperbolic function arises
from these considerations, which is described
by Equation 5 above (Killeen, 1994; Staddon,
1977). The function has been called a canon-
ical equation (Equation 4, Killeen, 1994), and
the impact of reinforcers is called either

response strength (Equation 22, Staddon,
1977), or activation (A) level (A 5 bR, where
b is a coefficient, Killeen, 1994).

However, if there are two or more reinforcer
sources available, each producing its own
activation level (that is, A1 5 bR1 and A2 5
bR2), they both compete for the available time
resulting in Equation 4 above. The parallel to
such an interaction between reinforcers has
been called competitive inhibition in enzyme
kinetics (e.g., Ainsworth, 1977).

Activation level does not necessarily have to be
a linear function of reinforcer rate. It can, for
example, be a simple hyperbola (A 5 bR/(R + d),
where d is a coefficient) as in the early version of
incentive theory (Equation 6, Killeen, 1982).
Turning to the Davison and Hunter (1976) LOE
equation, we can consider that activation level is
a power function similar to Stevens’ (1957) law:
that is, A 5 bRa, where a is a sensitivity parameter.
In this case, competing reinforcer rates will
result in Davison and Hunter’s (1976) LOE
equation (Equations 8 to 11), and the inhibition
of the effect of one reinforcer by another
remains a competitive inhibition.

Both Herrnstein’s (1970) and Davison and
Hunter’s (1976) LOE equations can be con-
sidered extensions of a simple hyperbolic
function with alternative reinforcers affecting
the coefficient k of the hyperbola, while the
coefficient Bmax remains constant. Thus we
can rewrite the general Equations 4 and 8
using a new coefficient k* (‘‘apparent k’’),
which is sum of the original coefficient k and
the other reinforcer rates. Herrnstein’s (1970)
LOE equation for ith response is:

Bi~BmaxRi=(Rizk�), ð12Þ

where k* 5 k + gRj, and j is the index of all
reinforcer rates other than the ith. Davison and
Hunter’s (1976) LOE equation for the ith

response is:

Bi~BmaxRi
a=(Ri

azk�), ð13Þ

where k* 5 k + gRj
a.

The left panel of Figure 4 shows an example
of a model based on competitive inhibition.
Three curves are shown, each for a different
level of reinforcer rate on the second alterna-
tive. As the alternative reinforcer rate R2

increases, we observe an increase in apparent
value of k, that is, the speed of change of B1
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with increasing R1 decreases, while the value of
the maximal reinforcer rate remains constant.

Navakatikyan’s (2007) LOE Model:
Non-Competitive Inhibition by Other Reinforcers

Unlike Herrnstein’s (1970) and Davison and
Hunter’s (1976) LOE equations, Navakatik-
yan’s (2007) model is based on a noncompet-
itive inhibition, using the analogy from enzyme
kinetics (e.g., Ainsworth, 1977). Navakatikyan
hypothesized that, for a single-response sched-
ule, reinforcers affect responding in a way
similar to Herrnstein’s (1970) LOE equation
(Equation 5). However, when other reinforcers
are present, they decrease the maximally
achievable response rate. Thus, Navakatikyan’s
LOE equation can be regarded as a modifica-
tion of Herrnstein’s (1970) hyperbola with the
constant Bmax being a decreasing hyperbolic
function of the other reinforcers:

Bi~B�maxRi=(Rizk), ð14Þ

B�max~Bmax
:kred=(kredz

X
Rj ), ð15Þ

where B*max is the maximal apparent response
rate and kred is a constant (k-reducing).

The right panel of Figure 4 shows an
example of a model based on noncompetitive

inhibition. As in the left panel, the model is
represented by three curves, each with the
same level of reinforcer rate on the second
alternative. However, for this noncompetitive
inhibition model, as the R2 increases, the
apparent value of k remains constant, so that
the ceiling of response rate is attained equally
fast by all curves, but the value of the maximal
response rate is decreased.

The LOE equations for the present article
were selected from the range investigated by
Navakatikyan (2007). The composite equation
selected is the product of two hyperbolas, one
increasing and the other decreasing, obtained
by combining Equations 14 and 15:

Bi~½BmaxRi=(Rizk)�½kred=(kredz
X

Rj )�, ð16Þ

and, for the case of two alternatives, with
addition of response bias (c), as:

B1~½BmaxcR1=(cR1zk)�½kred=(kredzR2�, ð17Þ

B2~½BmaxR2=(R2zk)�½kred=(kredzcR1�: ð18Þ

For a single alternative, the model reduces to
Herrnstein’s (1970) LOE equation (Equation
5) because ½kred=(kredzR2� in Equation 17
becomes 1 when R2 is 0.

Fig. 4. Change in the response–reinforcer curve for the first alternative with different reinforcer rates on the second
alternative showing the difference between models with competitive and noncompetitive inhibition. Left panel:
Competitive inhibition model based on Herrnstein’s LOE equation. Bmax 5 50 and k 5 1 for each curve, while k*
changes. Right panel: Noncompetitive inhibition model based on Navakatikyan’s (2007) LOE equation (Equation 17).
Bmax 5 50 and k 5 1 for each curve, while B*max changes.
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Navakatikyan (2007) derived Equations 17
and 18 from another perspective, without
using the analogy to enzyme-substrate kinetics,
and without a distinction between competitive
and noncompetitive inhibition. Two functions,
whose product comprises the model in Equa-
tion 16, were termed then component functions,
and Navakatikyan hypothesized that there
could be a range of such functions affecting
a response unit. He suggested distinguishing
reinforcers that are arguments in these func-
tions, and referred to them as enhancing and
reducing reinforcers, meaning that they respec-
tively enhance or reduce a particular behavior.
Accordingly, functions of the first category of
reinforcers were termed enhancing-component
functions, and functions of the second category
of reinforcers were termed reducing-component
functions. Behavior is a product of the compo-
nent functions plus a constant:

B~Fenh
:FredzBa , ð19Þ

where B is the resulting behavior, for example,
response rate or residence time, Fenh and Fred

are the enhancing- and reducing-component
functions of enhancing and reducing reinforc-
ers, respectively, and Ba is a baseline constant.
For the current approach, Equation 19 was
simplified by setting Ba to 0, thus leading us to
hyperbolic-hyperbolic Equations 17 and 18 of
general form:

B~Fenh
:Fred : ð20Þ

where

Fenh~BmaxRi=(Rizk), ð21Þ

Fred~kred=(Rjzkred), ð22Þ

and R i and R j are reinforcer rates on the
current and other alternatives.

Figure 5 shows an example of the compo-
nent functions and an arbitrary model result-
ing from their multiplication. We used en-
hancing and reducing descriptors for the
component functions, rather than just desig-
nating them as functions for current and other
reinforcers for the following reason: Common-
ly, the reinforcers on the current alternative
can be identified as enhancing reinforcers,
while reinforcers on other alternatives can be
identified as reducing reinforcers, but this may
not always be the case. For example, in

concurrent VI VI schedules, some reinforcers
that are consumed on a current alternative
may originate while the subject is working on
the other alternative (see, for example, Mac-

Fig. 5. A component-functions model with arbitrary
parameters. Upper panel: Enhancing-component function
(Fenh). Middle panel: Reducing-component function
(Fred). Lower panel: Full component-functions model for
response rate on the first alternative (R1) identified with
enhancing reinforcer rate (R enh), and response rate on
second alternative (R2) identified with reducing reinforcer
rate (R red).
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Donall, 2005), and it may be misleading to
regard only reinforcers on the current alter-
native as those that increase responding. Thus,
we prefer to regard enhancing and reducing
functions as those associated with activating
and inhibiting response processes.

As discussed by Navakatikyan (2007), other
types of functions also performed well as the
enhancing-component function, in particular
a bounded exponential and power function
with three free parameters, and we analyzed
their performance during preparation of this
article. However, we found that an adequate
description can be achieved by the simple
hyperbola (Equation 21). We did establish that
exponential and power functions Fenh 5 B max

(1-e2bR) and Fenh 5 BRb (where B is a constant)
performed as well as Equation 21, and we will
return to this finding in the Discussion.

As the consequence of different structures, a
major difference between Navakatikyan’s
(2007) LOE equation and Herrnstein’s
(1970) and Davison and Hunter’s (1976)
equations lies in the predictions of preference.
Herrnstein’s and Davison and Hunter’s equa-
tions predict constant preference between two
alternatives providing constant reinforcer-rate
ratios irrespective of the overall reinforcer
rate. The property described above may be
crucial for understanding the changes in
choice observed when different overall rein-
forcer rates are arranged with the same
reinforcer ratio (e.g., Alsop & Elliffe, 1988;
Elliffe & Alsop, 1996; Logue & Chavarro, 1987;
Mazur, 1992).

In summary, our goal here is to explore
further the feasibility of the component-
functions model (Navakatikyan, 2007) for the
law of effect in comparison to two others
(Davison & Hunter, 1976; and Herrnstein,
1970) by using them to analyze data from
experiments on behavioral dynamics.

THE DATA SETS

To demonstrate the feasibility of our mod-
eling approach, we start with performance in
single-key schedules using the results of
experiments with negative-slope feedback
functions (Vaughan & Miller, 1984; see also
Jacobs & Hackenberg, 2000). Then, we will
attempt to model the results reported by
Herrnstein and Loveland (1975), who used
independent concurrent VR VR schedules.

The common finding with the latter schedules
is exclusive, or almost exclusive, preference
for the richer alternative (e.g., Davison &
McCarthy, 1988; Myerson & Miezin, 1980;
Vaughan, 1982, 1985; but see also Nevin,
1982). Nevertheless, the results of Herrnstein
and Loveland’s experiments are more infor-
mative, as only in 4 out of 12 conditions was
preference greater than 90% for the richer
alternative. The effects were described by
Herrnstein and Loveland as follows: ‘‘When
the ratios [of VR VR schedules] summed to 60
(or 61 or 62), exclusive preference was
attained with a smaller relative difference
between the two ratios than when the sum
was 120. A relative difference of 0.15 or
thereabouts sufficed, on the average, for the
smaller ratios, while a relative difference about
twice as great barely sufficed for the larger ratios’’
(Herrnstein & Loveland, 1975, p. 109, paren-
thetical material added).

We then model dynamical experiments that
investigated transitions in concurrent VR VR
schedules (Mazur, 1992; Mazur & Ratti, 1991).
These experiments investigated transitional
performance when the reinforcer probability
ratio for two alternatives remained constant,
but overall reinforcer rate was varied (Mazur,
1992), and when the difference between
reinforcer probabilities was constant, but
overall probability was varied (Mazur & Ratti,
1991). In these two experiments, the change
in relative response allocation over time
following transitions differed, and depended
on both relative and overall reinforcer rate.
The results did not show a tendency for
exclusive preference within the time frame of
the experiments. As noted by Dragoi and
Staddon (1999, p. 36), these results are not
compatible with most models of acquisition
such as the linear-operator model (Bush &
Mosteller, 1955), the kinetic model (Myerson
& Miezin, 1980), melioration theory (Herrn-
stein & Vaughan, 1980), and ratio invariance
theory (Staddon, 1988). Other models, such as
the cumulative-effect model (Davis, Staddon,
Machado, & Palmer, 1993), and Daly and
Daly’s (1982) model also failed to generate
correct predictions when applied to these data
(Dragoi & Staddon). Dragoi and Staddon’s
acquisition-extinction theory predicted the
transitions quite well, but this account predicts
that preference will ultimately become exclu-
sive.
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Finally, we will model experiments that
examined melioration as a dynamical princi-
ple (Herrnstein, 1982; Herrnstein & Vaughan,
1980; Vaughan, 1981) as well as some related
experiments, such as experiments using con-
current VI VI schedules with equal local
reinforcer rates (Herrnstein & Vaughan,
Experiment 3; Vaughan, 1982) and using
constant-ratio unequal local reinforcer rates
(Horner & Staddon, 1987, Experiment 2;
Staddon 1988). We are not aware of any
attempt to fit a model to the melioration
experiment data, but a descriptive explana-
tion was given by Silberberg and Ziriax
(1985). This experiment remains a point of
interest (e.g., Corrado, Sugrue, Seung, &
Newsome, 2005).

To study dynamics, we used an approach
that predicts average behavior. We do not
consider here procedures in which an average
behavioral measure is not a proper represen-
tation of behavior, for example where a
feedback function window is short compared
to average residence time (Davison & Alsop,
1991; Silberberg & Ziriax, 1985), or where
there are complex local contingencies (Wil-
liams, 1991). Nor do we attempt to model
behavior on response-by-response level, or
with a full system of differential equations
(e.g., Corrado et al., 2005; Davison & Baum,
2000, 2003; Dragoi & Staddon, 1999; Gallistel
et al., 2007; Lau & Glimcher, 2005).

Unlike momentary maximization, molecular
maximizing and melioration (e.g., Davison
1990; Herrnstein & Vaughan, 1980; Shimp,
1966, 1992; Silberberg, Hamilton, Ziriax, &
Casey, 1978; Silberberg & Ziriax, 1982, 1985;
Vaughan, 1981, 1985), we do not consider our
approach as an independent local or molecu-
lar mechanism to derive an LOE equation.
There is no contradiction between our dynam-
ical model and steady-state LOE equations (for
related discussions see Baum, 2002; Shimp,
2004; and Williams, 1991). To the contrary,
the present approach assumes that a molar
equation, that is, a law of effect itself, is an
equation for steady states of dynamical models,
and we use this to derive the dynamics. Thus, if
a dynamical model is viable, it will be
compatible with an LOE equation by default.
Our primary objective here is to assess the
LOE equations, thus we concentrated on
dynamical experiments that we considered
important to be modeled, even if some of

them reported insufficient data for a full-scale
analysis.

DATA ANALYSIS

We used the QuattroPro 8 spreadsheet
optimizer to fit data and to calculate graphs
of behavior change over time for the visual
analysis of equilibria. Time steps from 1 to
4 min were usually used. If absolute measures
of behavior were not available, preference
measures were used to find model parameters.
We often used variance accounted for (VAC)
by the model to assess the quality of fit.
However, as the models have a different
number of adjustable parameters, it is not
always sufficient to calculate VAC, as an
additional free parameter will naturally in-
crease VAC. Navakatikyan (2007) used the
Akaike second-order information criterion
(AICc) and the Bayesian information criterion
(BIC) to take account of the different number
of parameters in the model, as the common
Akaike criterion (AIC) is not recommended
for small samples (Burnham & Anderson,
1998). Here, we employed only BIC, because
the number of data for some of the sets was
too small to allow the use of AICc. We will use
the BIC formula derived for series of data, that
is, for models fitted individually for a series of
subjects in an experimental group (McArdle,
personal communication, 2005; Navakatikyan,
2007):

BIC~
XN
i~1

ni
:loge

RSS

ni

� �
zKN loge

XN
i~1

(ni), ð23Þ

where N is the number of data sets or subjects;
i is index of a data set 1, 2, . . . N, RSS is the
residual sum of squares for the fitted model,
and K is the number of adjustable parameters
in a model plus 1. The smaller the value of the
BIC measure, the better the model described
the data. Absolute values of BIC by themselves
have no meaning for a given data set, as they
depend on the dimension of RSS—for exam-
ple, response rate measured in responses per
seconds will produce a 602 times smaller RSS
value than responses per minute.

Conventionally, models are compared using
the differences between values of BIC, which
are independent of the dimension of RSS. A
cutoff value of 6 for a difference in informa-
tion criteria is recommended by Burnham and
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Anderson (1998) for a model to be considered
a better data description. A cutoff difference of
10 or more means that there is virtually no
support for a model with the larger BIC value
being a better description (Burnham & An-
derson). It is common to present the results as
the differences (DBIC) between a model’s BIC
and the BIC of the best model. In the results
we will designate cases with DBIC . 6 and
DBIC . 10 as the presence of evidence and
strong evidence for the best model.

MODELING 1: SINGLE-KEY SCHEDULES
WITH NEGATIVE SLOPE
FEEDBACK FUNCTIONS

Vaughan and Miller’s (1984) Data

The goal of this section was mainly to
demostrate the feasibility of our dynamical
modeling approach. In Experiment 1 of
Vaughan and Miller (1984), feedback func-
tions were arranged in which an increase in
response rate produced a linear decrease in
reinforcer rate for a range of response rates.
This single-key procedure has two compo-
nents. The first component was a linear VI
schedule in which response rate does not
affect reinforcer rate over a wide range. The
schedule was arranged by running VI sched-
ules and storing reinforcers, rather than
stopping timing when reinforcers are ar-
ranged. The feedback function for the linear
VI schedule is R 5 min (B, 1/t), where t is the
mean interval (Figure 6, upper left panel) and
min is minimum. The function increases
linearly from zero with reinforcer rate equal-
ing response rate. Once the response rate
reaches the level of the arranged VI reinforcer
rate, the function becomes a horizontal line
with zero slope. The second component is a
negative-slope feedback function produced by
subtracting reinforcers from the store using a
parallel fixed ratio (FR) schedule. This results
in the composite feedback function R 5
min(B, 1/t) 2 B/N, where N is the FR schedule
ratio requirement. Figure 6 (upper right pan-
el) shows an example of this feedback func-
tion, for which the maximum reinforcer rate
can be achieved by responding less than 5
times per min.

In Vaughan and Miller’s (1984) Experiment
1, 9 pigeons were given nine different sched-
ules; 3 different pigeons were trained on a set
of three different schedules. The schedules

were combinations of three linear VI sched-
ules, VI 30 s, 45 s and 90 s, and three FR
schedules, FR 20, 40 and 60. Conditions took
between 23 and 71 sessions for performance
to stabilize. Equilibrium response rates pro-
duced reinforcer rates that were substantially
lower than maximal, and the data were
inconsistent with most simple theories of
optimal performance. Vaughan and Miller
suggested that the results were consistent with
the assumption that reinforcement strength-
ens the tendency to respond, but no mecha-
nism was offered.

The data averaged over the last five stable
sessions of each condition were reconstructed
from Figure 1 of Vaughan and Miller (1984).
There were only three different conditions for
each pigeon, so we averaged response and
reinforcer rates for similar conditions.

Vaughan and Miller (1984): Models and Results

For Navakatikyan’s (2007) LOE model, the
data require a single-alternative function with
no bias and no reducing-component function.
Thus, we used Equation 5 for Herrnstein’s
(1970) and Navakatikyan’s (2007) LOE mod-
els, as they are identical for single-key proce-
dures. We used Equation 9 for Davison and
Hunter’s (1976) LOE model. Dynamics were
modeled with an arbitrary initial value of 40
responses per min and an arbitrary experi-
ment time of 300 min. Models were optimized
with respect to response rate. Data over the last
50 min of the model applications were aver-
aged and compared with empirical data.

All three models fitted data very well,
accounting for 94% to 95% of response-rate
variance. There was no evidence that any one
of the three models was a better model
according to the values of BIC differences
(Table 1), that is, all DBIC were less than 6.
Time graphs of Herrnstein’s (1970) and
Navakatikyan’s (2007) dynamical models are
shown in Figure 6 (middle panel). Full results
with the model parameters, variance account-
ed for, and DBIC are given in Appendix A
(Table A1).

A graph of Herrnstein’s (1970) and Nava-
katikyan’s (2007) LOE equations and their
intersections with the feedback functions (the
equilibrium points) are shown in lower panel
of Figure 6 (see also Baum, 1973, Figure 5, for
a similar approach). The graphs for Davison
and Hunter’s (1976) LOE equation were very
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Fig. 6. Dynamical modeling of the procedure and results of Vaughan and Miller’s (1984) experiment. Upper-left
panel: Example of linear-VI feedback functions. Upper-right panel: VI reinforcement with FR-schedule reinforcer loss (i.e.,
negative slope). Middle panel: Time graphs. Lines are graphs related to VI–FR schedule. Unfilled squares are data, located
near the middle of the last 50 min of the model application. Lines connect the data squares to the respective model time
graphs. Lower panel: LOE model. The thick line is the LOE model. Filled circles are stable equilibria predicted by the
dynamic model. The unfilled circle at the origin is an unstable equilibrium. The LOE graph intersects the nine different
feedback functions used. The model is based on Herrnstein’s (1970) and Navakatikyan’s (2007) LOE equations for the case
of a single-key procedure (Equation 5 for both LOEs). Averaged data are from Vaughan and Miller (1984), Experiment 1.
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similar and were omitted from Figure 6. There
were two equilibria in each of the three
models, as the LOE curve (thick line in the
lower panel of Figure 6) intersects every
feedback function twice. The first equilibrium
is located at the origin, and is unstable. Close
to the origin, the current response rate (B*) is
lower than the equilibrium response rate, that
is, (B 2 B*) . 0, and thus the response rate
increases until the second equilibrium is
reached. This equilibrium is stable, and it is
situated far from the maximal response rate. If
B* becomes higher than B, the difference (B 2
B*) becomes negative and B* decreases. An
analytical way to find equilibria for Herrn-
stein’s and Navakatikyan’s models is given in
Appendix A.

Thus, all three models are viable dynamic
descriptions for these experiments, producing
good fits and having stable equilibria located
where they are observed in the data and
suggesting that the modeling approach is
feasible.

MODELING 2: INDEPENDENT
CONCURRENT VR VR SCHEDULES

Concurrent VR VR Data

We will consider the data from three
experiments that arranged concurrent inde-
pendent VR VR schedules. Herrnstein and
Loveland’s (1975) experiment arranged con-
ditions that both produced, and did not
produce, exclusive preference for the richer
alternative after up to 100 sessions. In Mazur’s
(1992) experiment, different overall reinforc-
er rates with the same reinforcer ratio pro-
duced preference changes in a transition
session. In Mazur and Ratti’s (1991) experi-
ment, different overall reinforcer rates with
the same difference in reinforcer ratio pro-
duced changed preference over single long
transition sessions.

Herrnstein and Loveland (1975). In a standard
two-key chamber, 5 pigeons were trained on
concurrent VR VR schedules. The sum of two
VR ratios was approximately 60 in Series 1, and

Table 1

Performance of the dynamical models.

Experiments Data
Behavioral
measure

Steady-state law of effect equation

Herrnstein, 1970 Davison & Hunter, 1976 Navakatikyan, 2007

VAC DBIC Equilibria VAC DBIC Equilibria VAC DBIC Equilibria

Negative slope Vaughan & Miller,
1984, Experiment 1

B 94.0 0 E+ 94.6 1.8 E+ 94.0 0 E+

Independent
VR VR

Herrnstein &
Loveland (1975)

B 58.5 46.9x E2 88.9 16.5 x E+ 94.4 0 E+
PL 254.0 - 80.5 - 80.8 -

Mazur (1992),
Experiment 1

P 78.8 156.3 x 91.2 64.3 x 95.1 0

Mazur & Ratti
(1991)

P 83.1 28.0 x 91.2 2.7 91.7 0

Melioration Vaughan (1981) T 82.1 108.2 x E+ 82.3 108.7 x E+ 95.3 0 E+
fr 85.9 - 84.4 - 85.3 -

Equal local
reinforcer
rates

Herrnstein &
Vaughan (1980),
Vaughan (1982),
Experiment 3

fr 66.1 8.8+ E2 74.2 0 E+ 74.0 0.3 E+

Unequal local
reinforcer
rates

Horner & Staddon
(1987),
Experiment 2

MP 0/8 - E2 6/8 - E+ 6/8 - E+

+ Evidence against a model being the best model (DBIC . 6); x strong evidence (DBIC . 10).
Note. VAC is percentage of variance accounted for by response rate (B), residence time (T), proportion of responses to

the rich (P) or left (PL) alternative, or fraction of time to the right alternative (fr). DBIC is the difference of a model
Bayesian information criterion from the best model. MP is the number of major peaks in choice histograms explained by
model out of 8 cases. E+ and E2 denote the presence and absence of stable equilibria in the dynamical model that are
observed in experiments. VAC is given for the average bird data or as the median over individual-bird models. Where
VAC values are reported for an absolute behavior measure (B or T) and a preference (PL or fr), the optimization was
performed for the absolute behavior measure, thus DBIC for preference is meaningless.
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120 in Series 2 and 3. The following pairs of
ratios were used in Series 1: 30, 30; 25, 35; 21,
41; and 11, 50; and in Series 2 and 3: 60, 60; 50,
70; 40, 80; and 20, 100. Thus the ratios of N1 to
N2 were 1, 0.7, 0.3, and 0.2, where N1 and N2

are the responses per reinforcer on the VR
schedules. In Series 1 and 2 reinforcers could
not occur within 1.5 s of changing over, but
responses still were counted. In Series 3 there
was no changeover delay. Conditions lasted
between 20 and 101 sessions, with less training
given for more extreme ratios. The results
were presented as response proportions aver-
aged over the last 10 sessions. We reconstruct-
ed absolute values of response and reinforcer
rates averaged over subjects from Herrnstein
and Loveland’s Figures 1, 2 and 5, and used
these data for modeling.

Mazur (1992). Experiment 1 studied pi-
geons’ performance in transitions from equal
probabilities of reinforcement for two alterna-
tives to unequal probabilities of reinforce-
ment. There were 50 different conditions,
each consisting of three or four equal rein-
forcer probability (training) sessions followed
by one unequal-probability (or transition)
session. In equal-probability sessions, the
reinforcers were arranged by running a single
VR schedule that assigned a reinforcer to two
alternatives with equal probability. If a rein-
forcer was assigned to a key, no reinforcer
could be assigned to either key until that
reinforcer had been collected—an interde-
pendent concurrent VR VR schedule. This
procedure was used for the first 100 responses
in each transition session. After 100 responses,
the schedule was switched to unequal proba-
bilities in which two independent VR schedules
were in effect on the two keys. For training
sessions and the first 100 responses of transi-
tion sessions, the probability that reinforcer
would be assigned for the next response was
the mean of the probabilities in the transition
phase. Experiment 1 had two parts. In Part 1,
there was one condition with a very large
difference in reinforcer probabilities (.19 and
.01) and four conditions with a 5:1 reinforcer
ratio (.20/.04, .15/.03, .10/.02, .05/.01). In
Part 2, the condition with a large difference of
reinforcer probabilities (.19/.01) was inter-
spersed with conditions with a 2:1 reinforcer
ratio (.16/.08, .12/.06, .08/.04, .04/.02).

Results were averaged over subjects and
similar conditions and presented as propor-

tions of responses to the rich alternative per
block of 100 responses in transition session.
The largest change in preference was observed
for the 19:1 ratio, then for the group with 5:1
ratio, and then for the group with 2:1 ratio.
Within groups of probabilities with the same
ratio, Mazur (1992) reported that the fastest
changes were associated with the larger overall
probability of reinforcement. Absolute re-
sponse rates were not available and the
proportion of responses to the rich alternative
was reconstructed from Mazur’s Figures 1 and
2 for modeling.

Mazur and Ratti (1991). In an experiment
similar to that of Mazur (1992), constant
differences in two probabilities of reinforce-
ment were studied with different overall
reinforcer rates. The experiment included 20
conditions, each consisting of two or three
training sessions followed by one transition
session. There were five different combina-
tions of reinforcer probabilities. Four of these
had differences in probabilities of .06 (.16/.10,
.13/.07, .10/.04, .07/.01), while one combina-
tion had a larger difference in reinforcer
probabilities (0.19/0.01). Each combination
was repeated four times. Mazur and Ratti
reported that preference developed more
slowly when the ratio of two reinforcement
probabilities was smaller (.16/.10) than when
it was larger (.07/.01).

Results were again averaged over subjects
and similar conditions and presented as the
fractions of responses to the rich alternative
per blocks of 500 responses for transition
session. The first block in transition sessions
was 100 responses under the conditions of
training sessions. The proportion of responses
to the rich alternative was reconstructed from
Mazur and Ratti’s (1991) Figure 1.

Concurrent VR VR: Models and Results

Equations 6 and 7, 10 and 11, and 17 and 18
(Herrnstein, 1970; Davison & Hunter, 1976;
and Navakatikyan, 2007) were used as steady-
state LOE equations. Feedback functions were
R1 5 B1/N1 and R2 5 B2/N2. For the Mazur
(1992) and Mazur and Ratti (1991) experi-
ments, the probabilities of reinforcer (p) were
substituted by N 5 1/p for the modeling,
though in the description we will use the
original probabilities. For the data of Herrn-
stein and Loveland (1975), the same LOE
equations were also used for modeling the
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steady states without feedback functions (non-
dynamically) in order to compare the two
approaches.

Herrnstein and Loveland (1975). The usual
(nondynamic) modeling using steady state
LOE equations was done for all 12 conditions
of the experiment (Appendix B, Table B1). All
the steady-state models fitted with a high
degree of accuracy, with VAC values of 94%,
95% and 95% for the response rate for
Herrnstein’s (1970), Davison and Hunter’s
(1976) and Navakatikyan’s (2007) models,
respectively. VAC for the proportions of
responses allocated to the left alternative were
96%, 98% and 98%, respectively.

The same data were then used for dynamical
modeling, and the results were quite different.
An initial response rate of 50 responses per
min to both alternatives was used. We assumed
that all sessions were of the average length
reported for the last 10 sessions. Model values
for the last 10 sessions were averaged and
optimized against data. Models for Series 2
and 3 were virtually identical and are present-
ed together, though these data were obtained
in a slightly different number of sessions.
Model parameter values and accuracy are
given in Appendix B, Table B1, and accuracy
is summarized in Table 1. Herrnstein’s model
performed poorer than others, accounting for
only 58% of response rate variance and 254%
of response proportions to the left alternative
(PL). The negative value is possible for VAC,
unlike R2, and shows the model performed
poorly—there was a greater variance between
the data and predictions than in the data
themselves. Davison and Hunter’s (1976)
model accounted for 89% of response rate
variance and 81% of PL variance. Navakatik-
yan’s (2007) model performed better in all
categories, accounting for 94% of response
rate variance and 81% of PL variance. Differ-
ences in BIC (Table 1, Appendix B, Table B1)
provided strong evidence (DBIC . 10) that
Navakatikyan’s model performed better than
the others. The predictions for response rate
at equilibria for all three models are given in
Figure 7. The difference between models is
especially pronounced for the lean alternative,
where Herrnstein’s (1970) model predicted
complete extinction on this alternative for all
but equal VR VR ratios, while Navakatikyan’s
and Davison and Hunter’s models predicted
this result only for the most extreme ratio.

The same data plotted as response propor-
tions for the left alternative against the session
number are shown in Figure 8. It is clear that,
for Herrnstein’s model, only the N1/N2 5 1
ratio does not immediately go to exclusive
preference, but will go there eventually. Fits
for Davison and Hunter’s (1976) and Navaka-
tikyan’s (2007) models here are very similar,
but we have to bear in mind that optimization
was performed for the response rates, and not
for the proportions.

Mazur (1992). The training sessions were
modeled as 30-minute sessions, which was long
enough to reach a steady state. We treated the
training session as independent concurrent
schedules rather than as interdependent
schedules as their role is merely to provide
approximately equal preference between two
alternatives. Models were optimized against
the proportion of responses allocated to the
rich alternative and parameter, VAC, and
DBIC values are given in Appendix B, Table
B1, and in Table 1.

Herrnstein’s (1970) model performed least
well (VAC 5 79%). Davison and Hunter’s
(1976) model performed better in terms of
variance accounted for (VAC 5 91%), and
Navakatikyan’s (2007) model performed best
(VAC 5 95%). BIC differences provided
strong evidence (DBIC . 10) for Navakatik-
yan’s model being the best description. The
major problem with Herrnstein’s and Davison
and Hunter’s models was that they failed to
predict different dynamics for different overall
reinforcer rates, while Navakatikyan’s model
did so (Figure 9).

Mazur and Ratti (1991). Parameter values
and the accuracy of the models are shown in
Appendix B, Table B1 and in Table 1. Herrn-
stein’s (1970) model again performed poorest
(VAC 5 83%). Davison and Hunter’s (1976)
and Navakatikyan’s (2007) models performed
best (VAC 5 91% & 92%). BIC differences
show strong evidence (DBIC . 10) that
Navakatikyan’s model is better than Herrn-
stein’s. The model dynamics are shown in
Figure 10.

Concurrent VR VR: Equilibrium Properties of
the Models

The dynamical model based on Herrnstein’s
LOE for independent concurrent VR VR
performance has an equilibrium for both B1

and B2 positive only for the rare condition
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when N1 5 cN2. To put it simply, if there is unit
bias (c 5 1), the schedule ratios have to be
equal (N1 5 N2) to maintain this equilibrium.
Otherwise, the bias has to balance the inequal-
ity in the schedule ratios’ requirements in
order to provide an equilibrium. The phase
portrait of this system is shown in right panel
of Figure 11. The equilibrium is not a point,
but a line connecting two equilibria on the B1–
B2 axes. The system starts with some initial
condition, and then moves to the equilibrium
line preserving the initial ratio of B1:B2. The
exact value of bias cannot realistically hold, so
this equilibrium cannot be observed even if
the underlying LOE equation was as Herrn-
stein (1970) proposed. The other possible
phase portrait is shown in left panel of
Figure 11. It has a single stable equilibrium
on the side toward the richer alternative, thus
predicting only exclusive preference.

The two other models (Davison & Hunter’s,
1976, and Navakatikyan’s, 2007) have a stable
equilibrium located away from B1 and B2 axes
for some values of model parameters, and for
less extreme VR VR ratios. As an example,
consider phase portraits for Navakatikyan’s
model, the analytical considerations for which
are given in Appendix B. The trajectories were
derived using Navakatikyan’s model parame-
ters for the Herrnstein and Loveland (1975)
data from Table B1, Appendix B. Bias c was set
to 1 in order not to distort the picture. There
are three distinct phase portraits. The first one
shows a stable equilibrium for both B1 and B2

. 0 (left panel, Figure 12). Ratio require-
ments for this portrait were N1 5 13.5, N2 5
16.5. The phase portrait also has three
unstable equilibria located on the B1–B2 axes:
one is at (0, 0), and the others are when either
B1 or B2 equal 0. If B1 or B2 equals 0, then B2 or

Fig. 7. Predictions of response rate at equilibria for independent VR VR models based on Herrnstein’s (1970),
Davison and Hunter’s (1976) and Navakatikyan’s (2007) LOE equations. Data are from Herrnstein and Loveland (1975).
Data are plotted against the ratio of N1/N2, where N1 is the smallest schedule constant.
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Fig. 8. Predictions of preference: response proportion to the left alternative for independent VR VR models based on
Herrnstein’s (1970), Davison and Hunter’s (1976) and Navakatikyan’s (2007) LOE equations. Data are from Herrnstein
and Loveland (1975). Lines connect the data circles to the respective model time-graph. Data are annotated by the
related ratio of N1/N2, where N1 is the smallest schedule constant. Data in the right panels are from Series 2 and 3 with
the same VR VR ratios. In the upper right panel the model lines for N1/N2 5 0.5 and 0.7 ratios superimpose.
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B1, respectively, converge to two equilibria
along the axes, but cannot stay there, and
move to the stable equilibrium—thus they are
saddle-type unstable equilibria. In the middle
panel of Figure 12, a phase portrait is plotted
for the same model, but for more extreme
schedule ratios, namely, N1 5 6, N2 5 24. In
this case, the stable equilibrium with B1 and B2

. 0 disappeared and shifted to the axes of the
richer alternative. Two other equilibria are
unstable. Assessment shows that the stable
equilibrium disappears when the VR VR ratio
becomes more extreme than about 1:3. The
third phase portrait (right panel of Figure 12)
is for the same model and VR VR ratio as in
the first phase portrait, but with the parameter
k set at 1.5. Here, instead of a stable
equilibrium for B1 and B2 . 0, there is an

unstable (saddle) equilibrium. At the same
time, the third phase portrait has two stable
equilibria on the axes. Thus, the model
predicts the possibility of exclusive preference
for the rich or poor alternative, depending on
initial conditions.

In summary, the three dynamical models for
the independent VR VR schedule experiments
considered here performed differently. Herrn-
stein’s (1970) model was not an acceptable fit
to the data of Herrnstein and Loveland (1975)
and Mazur (1992). It does not provide
different curves for transitional data (Mazur)
with the same ratio of schedule constants, but
different overall reinforcer rates. Equilibrium
analysis confirms that the model does not have
a stable equilibrium for both B1 and B2

positive, except at a very particular value of

Fig. 9. Proportion of responses to the rich alternative in independent concurrent VR VR schedules with similar
reinforcer ratios and different overall reinforcer rates. The dynamic models were based on Herrnstein’s (1970), Davison
and Hunter’s (1976), and Navakatikyan’s (2007) LOE equations. Data are from Experiment 1 of Mazur (1992). Curves
represent blocks of 100 accumulated responses. Variable ratios are shown as reinforcer probabilities.

108 MICHAEL A. NAVAKATIKYAN and MICHAEL DAVISON



bias, and thus generally predicts only exclusive
preference. Davison and Hunter’s (1976)
model fitted the data better, though it did
not produce different transitional curves for
Mazur’s experiment. Nevertheless, the model
does have stable equilibria for both B1 and B2

positive. Navakatikyan’s (2007) model fitted

data well, and shows the existence of equilibria
for B1 and B2 . 0, as observed by Herrnstein
and Loveland. It also predicts exclusive prefer-
ence when the ratio of VR VR constants become
more extreme, and allows for preference for
the lean alternative given appropriate initial
values as, for example, in Herrnstein (1958).

Fig. 10. Proportion of responses to the richer alternative in independent concurrent VR VR schedules with similar
reinforcer-ratio differences and different overall reinforcer rates. The dynamic models were based on Herrnstein’s
(1970), Davison and Hunter’s (1976), and Navakatikyan’s (2007) LOE equations. Data are from Mazur and Ratti (1991).
Curves represent blocks of 500 accumulated responses. Response proportions at zero accumulated responses represent
the last 500 responses of equal-probability schedules. Variable ratios are shown as reinforcer probabilities.
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MODELING 3: VAUGHAN’S (1981)
MELIORATION EXPERIMENT

Vaughan (1981): Data

The melioration experiment described by
Vaughan (1981) used 3 pigeons working on
concurrent arithmetic VI VI schedules. Press-
ing one of two alternative keys added 2 s to the
cumulative timer for an alternative. The timer
for the alternative response timed, and the

associated VI tape advanced, unless a reinforc-
er was delivered or the other key was pecked.
The feedback functions were arranged so both
relative and overall reinforcer rates depended
on the proportion of time spent responding
on the right alternative (fr). At the end of each
4-min period, this proportion was calculated
and new local reinforcer rates were arranged
for the next 4 min. We reconstructed the
feedback functions (Figure 13) from Figures 1

Fig. 11. Phase portraits for the dynamical model for independent concurrent VR VR schedules based on Herrnstein’s
(1970) LOE equation for the conditions of N1 ? cN2 and N1 5 cN2. The filled circle and thick line are stable equilibria;
unfilled circles are unstable equilibria. Time direction is shown by arrows.

Fig. 12. Phase portraits for the dynamical model for interdependent concurrent VR VR schedules based on the
Navakatikyan’s (2007) LOE equation. Filled and blank circles are stable and unstable equilibria respectively, and arrows
show the time direction. Left panel: Model for Herrnstein and Loveland’s (1975) data with moderate VR VR ratio (13.5/
16.5). Middle panel: The same model for more extreme VR VR ratio (6:24). Right panel: Model with the value of k
increased to 1.5.
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and 3 of Vaughan (1981) approximating the
curvilinear portions by logistic equations.

During the first 26 sessions, the feedback
function called Condition a was applied
(upper left panel, Figure 13). The local
reinforcer rates were arranged such that if
subjects chose according to melioration dy-
namics, relative performance fr would stabilize
in the range .125 to .25, which occurred (fr 5
.196, .160, and .148 were observed). If fr
increased above .25, the local reinforcer rate
on the right alternative decreased and re-
turned choice to the .125 to .25 range. If fr
decreased below .125, the local reinforcer rate
on the left alternative decreased and again
returned choice to the .125 to .25 range.
Overall rate of reinforcement in the .125 to .25
range was three reinforcers per min. Starting

from Session 27, the feedback function called
Condition b was applied (upper right panel,
Figure 13). Now, local reinforcer rates above fr
5 .25 were arranged that would, according to
melioration dynamics, push fr toward the
range .75 to .875. The new range was also
arranged in a way that precluded behavior
drifting away from the area of .75 to .875.
Overall rate of reinforcement in the .75 to .875
range was one reinforcer per min; thus,
according to melioration, the feedback func-
tion induced choice to move to the lower
overall reinforcer rate area. The shift toward
the .75 to .875 range commenced almost
immediately for Bird 1, and after 10 sessions
for Bird 3. For Bird 2, though, this change
required the successive introduction of two
more conditions (Conditions b1 and b2) to

Fig. 13. Feedback functions for the melioration experiment (Herrnstein & Vaughan, 1980, Vaughan, 1981). RL and
RR are local rates of reinforcers on the left and right keys. Curvilinear parts of the feedback functions were approximated
by logistic equations using data from Figure 1 and 3 of Vaughan (1981). Condition a feedback function was designed to
keep behavior in fr (proportion of time to the right) 5 .125 to .25. Conditions b, b1, and b2 were designed to shift
behavior to the fr range of .75 to .875.
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facilitate the initial shift in behavior. Even with
these additional conditions, it took another 5
sessions until Bird 2’s choice changed. After
total of 84 sessions fr of the 3 birds stabilized at
the values .792, .768 and .782, respectively.

Data on time spent responding and not
responding were taken for modeling from
Table 1 of Vaughan (1981). To calculate
reinforcer rate properly from local rates, we
subtracted the fraction of time that pigeons
were not responding: 16%, 27% and 12% for
Birds 1 to 3, respectively. Accuracy of modeling
was also checked against relative time spent on
the right from Vaughan’s Figure 2, but the
optimization was performed using the absolute
values of time spent responding.

Vaughan (1981): Models and Results

The same three LOE equations (Herrn-
stein’s, 1970; Davison & Hunter’s, 1976; and
Navakatikyan’s, 2007) were used to construct
dynamic models by combining them with the
arranged feedback function. The time spent
on an alternative was averaged over the same
sessions as in Vaughan’s original experiment.
These were the initial Sessions 23 to 27
(Condition a), and the final Sessions 79 to
83 for all birds. Time for the transition phase
was averaged over Sessions 28 to 32 for Bird 1,
Sessions 61 to 65 for Bird 2 and Sessions 36 to
40 for Bird 3. To induce the transition from
Condition a to b, we decided not to rely on
random processes but we added a constant
impulse to three consecutive 4-min intervals at
the start of the transition for each bird. Initial
values of times spent responding were taken
equal to the values obtained in the transition
phases. As there were only six values of time to
optimize the models, we had to limit the scope
of search for the best solution. Thus, we first
obtained initial values for the parameters of
the LOE equations without applying a feed-
back function. Then we selected an impulse
value in steps of 0.5 s to induce a minimal
response. Then the dynamical constant was
selected to lie from 0.025 to 0.07. The
parameters for the LOE equations were then
optimized (Appendix C, Table C1 and Ta-
ble 1). An example, using Herrnstein’s and
Navakatikyan’s models for Bird 3 is given in
Figure 14. Davison and Hunter’s model for
Bird 3 was almost identical to Herrnstein’s and
was thus omitted. The VAC of predicted time
spent responding were 82%, 82%, and 95% for

Herrnstein’s, Davison and Hunter’s, and Na-
vakatikyan’s models, respectively. BIC differ-
ences provided strong evidence (DBIC . 10)
that Navakatikyan’s model was the best de-
scription of the data. However, as the number
of data points was small, this result must be
taken cautiously. The VAC for the predictions
of fr ranged from 85% to 86%. The most
important result here is that reasonably
successful models for all three LOE equations
were built without assumptions that local
reinforcer rates drive the dynamics as required
by melioration.

Vaughan (1981): Equilibrium Properties

All three models have similar phase portraits
and equilibria. In Condition a there was a
stable equilibrium at about fr 5 .125, which
keeps behavior in this area. In Condition b a
second stable equilibrium at about fr 5 .75
appeared. Two stable equilibria in Condition b
are separated by an unstable one at about fr 5
0.4. This unstable equilibrium prevents an easy
transition from the first stable equilibrium to
the second, as Vaughan (1981) observed. To
start the transition, a fluctuation in behavior is
required that results in the allocation of some
additional time for the second alterative.

MODELING 4: EQUAL LOCAL
REINFORCER RATES

Equal Local Reinforcer Rates: Data

An experiment with equal local reinforcer
rates (Experiment 3, Vaughan, 1982; also
Herrnstein & Vaughan, 1980) was conduct-
ed using the same method as used for
Vaughan’s (1981) experiment on melioration.
In Vaughan’s (1982) experiment, 3 pigeons
worked on independent concurrent arithmetic
VI VI schedules. As described in the previous
section, each VI tape advanced 2 s if the
associated key was pecked. Every 4 min, the
fraction of time allocated to the right alterna-
tive (fr) was calculated and used to set the
overall reinforcer rate for the next 4 min,
while local reinforcer rates were kept equal.
The feedback function has an asymmetric
maximum of overall reinforcer rate equal to
two reinforcers per min at fr 5 .25, and a
minimum rate of one reinforcer per min at the
extremes. We reconstructed the function from
Herrnstein and Vaughan’s Figure 5.8 by qua-

112 MICHAEL A. NAVAKATIKYAN and MICHAEL DAVISON



dratic approximations of the left and right
parts of function (Figure 15).

After 26 sessions, the time allocation of all 3
pigeons had reached neither exclusive prefer-
ence nor the maximum overall reinforcer rate,
but averaged fr 5 .6 (range .44 to .74). Average
values of fr for Sessions 1–5, 6–10, 11–15, 16–20

and 21–26 from Herrnstein and Vaughan’s
(1980) Figure 5.8 were taken for modeling.

Equal Local Reinforcer Rates: Models And Results

Modeling was conducted for 28-min sessions
across the 26 sessions. As there were only five fr
data points for each model, we limited the
variation in our model parameters by setting
Bmax 5 50, and kt 5 0.05 in all models. Models’
parameter and accuracy values are given in
Appendix D, Table D1 and Table 1. Fits are
shown in Figure 16. Herrnstein’s (1970) mod-
el again performed poorer than the others
(VAC 5 66%). Davison and Hunter’s (1976)
and Navakatikyan’s (2007) models performed
better and did not differ from each other
(VAC 5 74% for both). BIC difference
provided evidence (DBIC . 6) that both
models were better descriptions than Herrn-
stein’s.

Using VAC as measure of accuracy does not
accurately reflect the relative quality of the
models in this case. First, data points for Bird
1, for example, did not deviate far from
indifference and provide little variance to
account for. Second, for Birds 2 and 3,
Herrnstein’s model gave reasonably good
predictions because bias, c, was close to unity

Fig. 14. Dynamic models of Vaughan’s (1981) melioration experiment. Data are from Pigeon 3. Herrnstein’s (1970)
and Navakatikyan’s (2007) LOE equations were used. TL and TR are times spent responding to the left and
right alternative.

Fig. 15. Feedback function of overall reinforcer rate
with equal local reinforcer rate (Experiment 3, Vaughan,
1982; also Herrnstein & Vaughan, 1980). fr is the
proportion of time spent responding with at least one
response per 2 s on the right alternative calculated every
4 min. The left and right parts of the function were
approximated by quadratic equations using data from
Figure 5.8 of Herrnstein and Vaughan (1980).
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(0.97 for both birds; see Appendix D, Table
D1). A unit value of bias would keep prefer-
ence constant, while a slight deviation from
unity allows for a slow transition to exclusive
preference, which fitted the data even though

the data themselves were not indicative of
exclusive preference.

Equal Local Reinforcer Rates: Equilibrium
Properties Of The Models

The equilibrium properties of the models
are similar to those for independent concur-
rent VR VR schedules. Herrnstein’s (1970)
model has a stable equilibrium for both B1 and
B2 positive only when c 5 1 (Figure 17, right
panel). The equilibrium, as for independent
concurrent VR VR schedules, is a line.. The
system starts with some initial condition, then
moves to the equilibrium line preserving the
initial value of fr. If c , 1, the system has a
stable equilibrium on the T2 axis at fr 5 0; if c
. 1, the system has a stable equilibrium on the
T1 axis at fr 5 1, as shown in the left and
middle panels of Figure 17). If behavior
adhered to the Herrnstein LOE equation, we
would expect exclusive preference to be
observed in the experiment, because c exactly
equaling 1 is improbable.

All other models have stable equilibria in
the area centered on fr 5 .5 for a range of
parameter values that is similar to the ones
shown in left panel of Figure 12 (Navakatik-
yan’s 2007 model for interdependent concur-
rent VR VR schedules). Thus, Davison and
Hunter’s (1976) and Navakatikyan’s models
were consistent with observed data. For Nava-
katikyan’s model, for example, stable equilib-
ria occur when k , kred by factor of 2 to 2.5. A
change in parameters can lead to exclusive
preference in two ways: by an increase in bias
to the second alternative, but not toward the
first, or by increase in value of k. Further
increases in the value of k create two stable
equilibria on the axes, and one unstable
equilibrium in the central region like that
shown in the right panel in Figure 12. Finally,
under a rare combination of parameters, a
stable line equilibrium can occur. The dynam-
ical system moves toward the equilibrium line
keeping the initial value of fr constant.

MODELING 5: EXPERIMENT WITH
CONSTANT-RATIO UNEQUAL LOCAL

REINFORCER RATES

Unequal Local Reinforcer Rate: Data

Four pigeons were trained on asymmetric
interdependent concurrent VR VR schedules by

Fig. 16. Model fits for arithmetic VI VI schedules with
equal local reinforcer rates. Models are based on
Herrnstein’s (1970), Davison and Hunter’s (1976) and
Navakatikyan’s (2007) LOE equations. fr is the proportion
of time spent responding on the right alternative. Data are
from Figure 5.8 of Herrnstein and Vaughan (1980).
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Horner and Staddon (1987, Experiment 2; see
also Staddon, 1988). The schedule is asymmet-
ric as the local reinforcer rate on the majority
alternative was always twice that on the minority
alternative. The schedules were also interde-
pendent as the overall reinforcer rate depend-
ed on the proportion of responses to the
minority alternative (fr). Probability of reward
on the minority and majority alternatives were
linear functions: pr 5 0.066fr + 001 and pl 5 2pr,

respectively. Thus, the schedules were arranged
so that choice proportions favoring the higher
local reinforcer rate alternative (the meliora-
tion strategy) will always have the lower overall
probability of reward compared to a maximiza-
tion strategy (Figure 18).

The experiment consisted of 10 sessions
with the left and right alternatives as the
majority and minority alternatives, and then
the alternatives were reversed for a further 10
sessions. In most cases, the pigeons exhibited a
unimodal distribution of choice, allowing the
conclusion that choice was at equilibrium. The
main result was a partial preference for the
majority alternative. For 6 of 8 pigeons, prefer-
ence was represented by a single large modal
peak of fr distribution below fr 5 .33, but not at
exclusive preference; for the other 2 pigeons,
smaller peaks were observed in the same region.

Unequal Local Reinforcer Rates: Equilibrium
Properties of the Models

The dynamical models based on Herrn-
stein’s (1970), Davison and Hunter’s (1976)
and Navakatikyan’s (2007) LOE equations were
constructed. As there were no dynamical data in
the original article, we simply investigated the
equilibrium properties of the models.

Herrnstein’s (1970) model has a stable line
equilibrium for positive values of both B1 and
B2 for c 5 0.5 only (lower panels in Figure 19).
The equilibrium depends on value of param-
eter k (Herrnstein’s R0, which originally
represented unknown aggregated reinforcers
for unaccounted responses, Equations 6 and

Fig. 17. Phase portraits for the dynamical system for independent concurrent VI VI schedule with equal local
reinforcer rates (Experiment 3, Vaughan, 1982, and Herrnstein & Vaughan, 1980) based on Herrnstein’s (1970) LOE
equation. Left panel: Bias, c , 0. Middle panel: Bias, c . 0. Right panel: Bias, c 5 1. Other parameters of the model are:
Bmax 5 50, k 5 3, kt 5 0.05. Unfilled circles are unstable equilibria; filled circles and thick lines are stable equilibria.

Fig. 18. Feedback functions for reward probability for
the experiment with constant-ratio unequal local reinforc-
er rates (Experiment 2, Horner & Staddon, 1987; Staddon,
1988). Local reinforcer rate to the right alternative
(dashed line) is always smaller than to the left alternative
(dash-dotted line). Overall reinforcer rate was maximal at
exclusive preference for the right alternative (solid line).
Functions are drawn from the description in Horner and
Staddon (1987, p.76).
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7). As k increases, the equilibrium transforms
from the line connecting two positive points
on the axes, through the line connecting a
positive point on the B2 axis with the origin,
and is finally located at the origin. While some
of the trajectories from the model with c 5 0.5
can create a unimodal distribution of choice in
the area of partial preference for the majority
alternative, maintaining this constant bias is
unlikely. For all other values of bias, the
dynamical model exhibits exclusive prefer-
ence. For c . 0.5, there is a preference for
the majority alternative, that is, there is a stable
equilibrium on the B1 axis (upper three panels
in Figure 19), and for c , 0.5, the preference
switches to the minority alternative. As k
increases, the stable equilibrium moves to the
origin. Thus, Herrnstein’s model cannot ac-
count for the data.

However, Davison and Hunter’s (1976) and
Navakatikyan’s (2007) models had stable
equilibria in the area of partial preference
for fr , .33 for some range of parameter values
(see left panel of Figure 12 for a similar phase
portrait). In other words, the equilibria are

located where the major peaks of fr distribu-
tions were observed for 6 of 8 of Horner and
Staddon’s (1987) pigeons. The value of rein-
forcer bias (c) affects the position of the
equilibrium. For c . 0.5, the equilibrium is
biased toward majority alternative (fr , 0.5),
for c , 0.5 it is biased toward the minority
alternative.

While it is difficult to assess the accuracy of
models in the way similar to the other studies
investigated here, we present some summary
indication of performance in Table 1. We
conservatively denote success in terms of major
peaks in choice distribution that are success-
fully described by a model without bias. Under
this approach, Herrnstein’s (1970) model
accounts for none of the data, while the other
models account for the obtained fr distribu-
tions in 6 of 8 pigeons.

DISCUSSION

Three dynamical models were constructed
from Herrnstein’s (1970), Davison and Hunt-
er’s (1976) and Navakatikyan’s (2007) LOE

Fig. 19. Phase portraits for the dynamical system with constant-ratio unequal local reinforcer rates (Horner &
Staddon, 1987; Experiment 2) based on Herrnstein’s (1970) LOE equation. Upper panels: c 5 1. Lower panels: c 5 0.5.
Portraits form the left to the right are given in order of increasing values of k. Other parameters of the models are: Bmax 5

150, kt 5 0.05.
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equations. The idea behind the development
of the dynamical models was linearization –
the assumption that average behavior changes
linearly in proportion to the difference be-
tween the current state of behavior and the
state that is an equilibrium given current
reinforcer rates. In a similar way, Hull de-
scribed changes in habit strength in time as
being in linear proportion to the difference
between present habit strength and physiolog-
ical maximum under current conditions (Hull,
1943; Spence, 1942). This idea circumvents
the necessity to write the primary differential
equations. We simply assume that the steady-
state LOE equations are descriptions of
equilibrium behavior. Behavior is attracted to
this equilibrium.

There is a direct analog between our
dynamical modeling and short-term and
long-term expectancies of reinforcement that
drives operant behavior in models such as, for
example, Dragoi and Staddon’s (1999) acqui-
sition-extinction theory. They suggested that,
when short-term expectancy is greater than
long-term expectancy (i.e., when reinforce-
ment increases), the strength of operant
responses increases, and vice versa. The
short-term expectancy is equivalent to the
behavioral measure given the current (short-
term) reinforcer rate in our model, while long-
term expectancy is equivalent to the current
behavior rate in our model. The principle of
using a steady-state formulation for the law of
effect as the basis for dynamical models has
the advantage of allowing a test of the behavior
of molar models at the local level. What it
lacks, though, is a prediction of the fluctua-
tions that allow for sampling. As a result, in
Vaughan’s (1981) melioration experiment, we
resorted to using an additional pulse applied
to behavior in order to leave the area of one
equilibrium and to start the transition toward
another. This problem can be avoided if a
generator of random responses were added to
the model. But the advantage of not using a
random generator is the possibility of fitting a
model to the data without resorting to
multiple simulations.

Accuracy

The dynamical models based on Navakatik-
yan’s (2007) formulations for the law of effect
were preferable in terms of their accuracy of
description, though for some schedules they

performed on par with other models (see
Table 1). The accuracy of the descriptions of
the dynamics and equilibria based on Navaka-
tikyan’s model was also generally high for all
analyses. It is notable that the seemingly lower
overall values of VAC for Herrnstein and
Vaughan’s (1980) and Vaughan’s (1982) equal
local reinforcer-rate data were caused by the
nature of the behavioral measures—behavior
had little variability and tended toward indif-
ference, providing little variation to be ex-
plained.

All models performed equally well in de-
scribing the data from the single-key experi-
ment with negative feedback function
(Vaughan & Miller, 1984, Experiment 1) but,
in this case, all models reduced to a similar
and more simple form. Thus, the relative
advantages of Davison and Hunter’s (1976)
and Navakatikyan’s (2007) LOE equations
arose principally in multi-alternative choice,
where Davison and Hunter’s and Navakatik-
yan’s LOE models performed better than
Herrnstein’s (1970), apart from Vaughan’s
(1981) melioration experiment in which
Herrnstein’s and Davison and Hunter’s mod-
els were equivalent.

Navakatikyan’s (2007) model performed
better than Davison and Hunter’s (1976) in
describing Herrnstein and Loveland’s (1975)
data, Mazur’s (1992) data, and Vaughan’s
(1981) data. The principal difference between
the dynamical models is in describing Mazur’s
data (Figure 9). Unlike Navakatikyan’s model,
both Davison and Hunter’s and Herrnstein’s
LOE-based models did not allow different time
graphs for preference when the ratio of reward
probabilities for different alternatives was the
same (Figure 9). Mazur’s data are particularly
challenging for many other models (see the
Introduction, and Dragoi & Staddon, 1999, p.
36), but they are described by Dragoi and
Staddon’s acquisition-extinction theory. The
accuracy of description of Navakatikyan’s
model was considerably higher than that of
Dragoi and Staddon’s model (VAC 5 95%,
Table 1, versus 63%, calculated from Dragoi
and Staddon’s Figure 11). Nevertheless, we
need to be cautious about this difference, as
we are unsure to what extent they optimized
the parameters of their model. Nevertheless,
there was a difference—while the model based
on Navakatikyan’s LOE equation predicts that
the time graphs for Mazur’s data will converge
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to some stable-state values of response rates
allocated to both alternatives, acquisition-
extinction theory predicts exclusive preference
beyond the time boundaries of the data
(Dragoi, personal communication, 2008).
Whether or not Mazur’s data would have
converged to exclusive preference if the length
of sessions had been prolonged is difficult to
predict, though the figures presented by
Mazur suggest stabilization, rather than exclu-
sive preference (see our re-creation of the data
in the upper left panel of Figure 9). Nonex-
clusive stabilization is also suggested by the
concurrent VR VR data of Herrnstein and
Loveland—in most conditions, exclusive pref-
erence was not reached even after consider-
able training.

Surprisingly, no model had difficulty de-
scribing Mazur and Ratti’s (1991) data. Even
Herrnstein’s (1970) model predicted data that
were close to those observed (Figure 10), with
an accuracy higher than that of acquisition-
extinction theory (Table 1, VAC 5 83% versus
57%, calculated from Dragoi and Staddon,
1999, Figure 12).

As was mentioned in the Introduction, the
other forms of enhancing-component func-
tion suggested by Navakatikyan (2007) were
investigated, in particular, the bounded expo-
nential and unbounded power functions (Fenh

5 B max (1-e2bR) and Fenh 5 BRb). However,
these models did not perform systematically
differently compared to the hyperbolic model
used here. Thus, we cannot select the hyper-
bola as the sole representative for our model
on the basis of the data considered here.
Nevertheless, there are indications from sin-
gle-key VI schedules in rats (McDowell &
Dallery, 1999) that the hyperbola performed
better than both a bounded exponential
function of the same form, and a bounded
power function that can be expressed as Fenh

5 B max (12(R+1)b).

Is Accuracy of Data Description Affected
by Flexibility?

To account for different number of free
parameters when comparing the models, we
used the Bayesian Information Criterion
(BIC), which is a statistic combining accuracy
of fit with a penalty for the number of model
parameters. Yet, this might not be sufficient. It
has been shown that quantitative models with
the same number of free parameters differ in

the flexibility with which they are able to
describe data (Myung, Balasubramanian, &
Pitt, 2000; Pitt, Kim, & Myung, 2003). Myung
et al. compared two 2-parameter psychophys-
ical models: y 5 axb (Stevens’ 1957 model)
and y 5 a ln(x + b) (Fechner’s 1860 model).
When artificial data were generated from
Stevens’ and Fechner’s models with the
addition of random noise, they were recovered
differently using information criteria, in par-
ticular, by BIC. If the data were generated
from Stevens’ model, then Stevens’ model was
always chosen as the better. However, if data
were generated from Fechner’s model, then
Steven’s model was still chosen on 67% of
trials.

We decided to check whether BIC was an
adequate criterion to distinguish between
Herrnstein’s (1970), Davison and Hunter’s
(1976), and Navakatikyan’s (2007) LOE equa-
tions. We generated 50 sets of data for each of
three LOE equations in unbiased form, that is,
with c 5 1. The parameters of the models
(Appendix B, Table B1), as well as the set of 12
pairs of R1 and R2, were taken from the results
of modeling data from Herrnstein and Love-
land’s (1975) experiment. We created 12 values
of B1 for each of 50 3 3 datasets by adding
random, normally distributed noise of ap-
proximately 15% of the variation in B1. If
negative values of response rate were generat-
ed, they were truncated to zero. The values
of residuals in the best model for Herrnstein
and Loveland’s (1975) data (Navakatikyan’s
model, Appendix B, Table B1) were normally
distributed according to D’Agostino’s K2 test
statistic (D’Agostino, Belanger, & D’Agostino,
1990).

All datasets were optimized using the three
LOE equations. Herrnstein’s (1970) and
Davison and Hunter’s (1976) equations
were compared pair-wise with Navakatikyan’s
(2007). The best model was chosen according
to whether the difference in BIC exceeded 6.
We found that if datasets were generated by
Herrnstein’s equation, Herrnstein’s equation
was chosen by BIC as better than Navakatik-
yan’s in 18 out of 50 cases; in 1 case
Navakatikyan’s equation was chosen as better.
In the remaining cases, the BIC difference was
less than 6. If datasets were generated using
Davison and Hunter’s equation, Davison and
Hunter’s equation was chosen by BIC as better
than Navakatikyan’s in 27 out of 50 cases, while
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only in 2 cases was Navakatikyan’s equation
chosen as better.

If datasets were generated by Navakatikyan’s
(2007) equation, Herrnstein’s (1970) equation
was better than Navakatikyan’s in just 1 case,
while Navakatikyan’s equation was chosen in
25 cases out of 50 as a better description than
Herrnstein’s. On these data sets, Davison and
Hunter’s (1976) equation was chosen over
Navakatikyan’s in just 2 cases, while Navaka-
tikyan’s equation was chosen over Davison and
Hunter’s equation as the better in 28 of 50
cases. In summary, though this simulation is
limited, we can conclude that Navakatikyan’s
LOE equation appears not to have higher
flexibility than the competing LOE equations,
and that the use of BIC is supported as an
effective analysis tool in this case.

Thus, the superiority of Navakatikyan’s
(2007) model in describing the data used here
was not due to it being more flexible than the
other models considered.

Equilibria

All models had an equilibrium state located
where it was observed for the single-key
experiment with negative slope (Vaughan &
Miller, 1984, Experiment 1). In two-alternative
procedures, all models behaved similarly for
Vaughan’s (1981) melioration experiment. It
seems that the feedback function used in this
experiment will assure that almost any LOE
model will have equilibria in the same areas as
reported, namely, in the area of low fr for
Condition a, and the area of high fr for
Condition b.

In all other two-alternative schedules inves-
tigated here, the dynamical model based on
Herrnstein’s (1970) LOE equation was stable
in the area of nonexclusive preference only for
some unique conditions that are unlikely to
occur in real data. For concurrent VR VR
schedules, the model had equilibria for
response rates greater than zero on both
alternatives only if N1 5 cN2. In this case only,
the equilibrium is a straight line that depends
on initial conditions (Figure 11). For experi-
ments with equal local reinforcer rates (Herrn-
stein & Vaughan, 1980; Vaughan, 1982, Ex-
periment 3), equilibrium in areas of positive
response rates is reached only when c 5 1
(Figure 17, right panel). For the experiments
with constant-ratio unequal local reinforcer
rates (Horner & Staddon, 1987, Experiment

2), equilibrium in the area of positive response
rates is reached only when c 5 0.5 (Figure 19).
The dynamical models based on Davison and
Hunter’s (1976) and Navakatikyan’s (2007)
LOE equations had stable equilibria in the
area of positive response rates on both
alternatives for some range of model parame-
ters. Thus, they predict the absence of
exclusive preference, as was observed in the
majority cases under consideration.

In summary, only Navakatikyan’s (2007)
model described the observed behavior in all
cases, and in general it described them more
accurately. Davison and Hunter’s (1976) mod-
el was a close second, but did not describe
Mazur’s (1992) data effectively. As has been
mentioned, there was no significant difference
in performance of Navakatikyan’s models if
power, exponential and hyperbolic functions
were used as enhancing-component functions.
Thus, we cannot make a choice between them.
Moreover, we do not believe that a choice
between these models is important, as their
success is probably produced simply by the
structure of the model, the product of two-
component functions.

Negative-Slope Experiments

The experiments with negative-slope feed-
back functions (Vaughan & Miller, 1984) were
originally explained using a response-strength
account, rather than an optimization account,
as the overall reinforcer rate was obviously not
being optimized in the study. ‘‘…it seems
plausible to assume that reinforcement simply
increases the tendency to respond, indepen-
dent of the fact that the increase in response
rate drives down the rate of reinforcement.’’
(Vaughan & Miller, p. 346). The success of all
three LOE-based dynamical models consid-
ered here is evidence that this is the case.

Concurrent VR VR Schedules

Originally, nonexclusive preference in VR
VR schedules (Herrnstein & Loveland, 1975)
was discussed in terms of interaction between
some maximizing process and matching. It was
assumed that maximizing would result in
exclusive preference, were it not for an
additional tendency to minimize deviation
from matching. Melioration also predicts
exclusive preference on concurrent VR VR
schedules. But independent concurrent VR VR
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schedules in transition (Mazur, 1992; Mazur &
Ratti, 1991) produced results incompatible
with most of the dynamical models, except
Dragoi and Staddon’s (1999) model. Mazur’s
(1992) model (his Equations 1 to 3) produces
patterns of preference very similar to those
observed, but was not designed to predict
absolute response rate.

We converted the Mazur (1992) model from
a stochastic into continuous function and ran
optimizations against the preference data
reported in this paper and by Mazur and Ratti
(1991). According to the model, the value (V )
assigned to an alternative increases with each
reinforcer by r(12V ) and decreases with each
nonreinforcer by nV, where r and n are
constants and V is bounded by 1. The average
change in value is: DV 5 pr(12V ) 2 (12p)nV,
where p is the schedule probability of rein-
forcer such that p 5 1/N, where N is the
responses per reinforcer on the VR schedule.
Optimization of V1/(V1+V2) gave VAC 5 86%
for Mazur’s data, and 78% for the Mazur and
Ratti’s data. However, in both cases the
parameter r reached a value of 1028, to which
it was constrained, and the values of alterna-
tives (V1 and V2) were unrealistically low in the
range 1025 to 1028, far from the maximum of
unity.

Thus, the models based on Navakatikyan’s
(2007) LOE equation predict both absolute
response rates for the data of Herrnstein and
Loveland (1975) and changes in preference in
the Mazur (1992) and Mazur and Ratti (1991)
data. Neither matching, maximization, nor
melioration (Vaughan, 1985) is needed to
describe behavior in concurrent VR VR sched-
ules.

Another result from modeling of Herrnstein
and Loveland’s (1975) data is worth mention-
ing. While all three steady-state models can be
fitted nondynamically to these data accurately,
with VACs in the range 94% to 96%, dynamical
modeling discriminates between them, with
Navakatikyan’s (2007) model outperforming
the others.

Melioration

Neither matching, not a simple maximiza-
tion of the reinforcer rate, can explain the
melioration data reported by Vaughan (1981).
However, we demonstrated that all three
dynamical models based on LOE equations
can indeed describe these results. The expla-

nation is that all models considered here are
similar in terms of local dynamics: an increase
in local response rate if one local reinforcer
rate is increased and the other local reinforcer
rate is kept constant. Thus, we can suggest that
the original explanation of melioration as a by-
product of the law of effect was correct.
‘‘If, . . . we assume that the strengthening of
responses in one direction, and/or their
weakening in the other, leads to a shift
(because of these changes of strength) in the
distribution of behavior such that relatively
more time is spent in the locally better
situation, melioration (and by implication
matching) may be viewed as the outcome of
the relative strengths of changeover responses
within choice situations’’ (Vaughan, 1981, p.
148, see also Vaughan, 1982). It is worth
mentioning that the dynamic model based
on Herrnstein’s (1970) LOE equation fits the
original requirements for melioration dynam-
ics: Local response rate follows local reinforce-
ment rate, and choice converges to strict
matching. Unfortunately, the dynamical mod-
el based on Herrnstein’s LOE equation did
not always perform well, and predicts exclusive
preference in experiments where this result
was not observed—such as experiments with
equal and constant-ratio unequal local rein-
forcer rates (Herrnstein & Vaughan, 1980;
Vaughan, 1982, Experiment 3; Horner &
Staddon, 1987, Experiment 2), as well as in
most conditions of Herrnstein and Loveland’s
(1975) study.

Conclusion

As we showed in the Introduction, the major
difference in the structure of Herrnstein’s
(1970) and Davison and Hunter’s (1976) LOE
equations in comparison to Navakatikyan’s
(2007) LOE model is in the way that reinforc-
ers from other than current response alterna-
tives decrease behavior. Navakatikyan’s LOE
equation assumed non-competitive inhibition,
whereas Herrnstein’s and Davison and Hunt-
er’s models depend on competitive inhibition
(Killeen, 1982, 1994; Staddon, 1977). In the
latter, responses compete for available time.
The success of Navakatikyan’s model in de-
scribing the datasets considered here does not
favor the competitive inhibition. Indeed, in a
series of experiments, Catania (1969) showed
that signaling reinforcer availability on one
alternative of equal concurrent VI VI sched-

120 MICHAEL A. NAVAKATIKYAN and MICHAEL DAVISON



ules (thus providing more time for the
alternative response to occur) did not increase
response rate on the other alternative. How-
ever, if one alternative was changed to
extinction, the response rate on the other
alternative did increase. Both extinction and
reinforcer signaling dramatically decreased
response rate on the alternative on which it
was arranged. Thus, response inhibition in
concurrent VI VI schedules is caused by
alternative reinforcers, and not by alternative
responses competing for available time, sup-
porting the approach taken by Navakatikyan.

In terms of model parameters, Herrnstein’s
(1970), and Davison and Hunter’s (1976) LOE
equations imply that maximal response rate
(Bmax) remains constant when behavior on
other alternatives is reinforced, while Navaka-
tikyan’s (2007) LOE model implies that Bmax

decreases in accordance with a reducing-
component function of other reinforcers.
Navakatikyan’s assumption is consistent with
the multivariate rate equation (McDowell,
1980; McDowell & Kessel, 1979), which also
predicts an increase in Bmax with increases in
reinforcer magnitude. This result was demon-
strated for varying sucrose concentration
solutions as reinforcer by Dallery, McDowell,
and Lancaster (2000), and for varying water
deprivation by McDowell and Dallery (1999).
Similarly, Hull (1943) considered the effect of
reinforcer magnitude on physiological maxi-
mum of habit strength (M’ ) as a negatively
accelerated exponential function, M’ 5 M (1 2
e2kw), where M is the physiological maximum
of habit strength under optimal conditions, w
is the magnitude of the reinforcing agent, and
k a constant.

In conclusion, the linearization principle for
building dynamical models proved to be a
feasible approach to assess models in relation
to data. As a dynamical system, the two-
component functions molar model for the
law of effect suggested by Navakatikyan (2007),
based on the principle of noncompetitive
inhibition, performed better than models
based on Herrnstein’s (1970) and Davison
and Hunter’s (1976) LOE equations. It accu-
rately described the behavioral dynamics in
experiments with negative-slope feedback
functions (Vaughan & Miller, 1984), in con-
current VR VR schedules (Herrnstein & Love-
land, 1975; Mazur, 1992; Mazur & Ratti, 1991),
in Vaughan’s (1981) melioration experiment,

and in experiments with equal (Herrnstein &
Vaughan, 1980; Vaughan, 1982), and constant-
ratio unequal (Horner & Staddon, 1987;
Staddon, 1988) local reinforcer rates. In all
these experiments, Navakatikyan’s law of effect
formulation was shown to be an adequate
explanatory principle. Further research will be
needed to discover the generality of this
approach.
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APPENDIX A

MODELING EXPERIMENT ON FEEDBACK
FUNCTIONS WITH NEGATIVE SLOPE

(VAUGHAN & MILLER, 1984).

Finding Equilibrium Solutions for the Experiments
with Negative Slope Analytically, if Parameters of
LOE Equation Are Known

Let the response rate (Herrnstein’s, 1970,
and Navakatikyan’s, 2007, LOE equations for a
single-key procedure) and the feedback func-
tion be described by Equations A1 and A2:

B~BmaxR=(Rzk), ðA1Þ

R~ min (B, 1=t){B=N , ðA2Þ

where B is the response rate, and Bmax is the
maximum response rate constant; R and 1/k are
the reinforcer rate and reinforcer-rate constant
in reinforcers per hour; t and N are constants
for VI and FR schedules, respectively.

To find an equilibrium state, we have to
solve Equations A1 and A2 simultaneously.
Care has to be taken with the units of the
numerical values of parameters to be compat-

ible with units of reinforcers. B and Bmax have
to be expressed, for example, in responses per
hour, and t then has to be expressed in hours
per reinforcer. Once a solution is found,
response rate can be reconverted to the usual
dimension of responses per minute.

Equation A2 simplifies to:

R~ 1=t{B=N : ðA3Þ

Solving Equations A1 and A3 for B gives:

B~Bmax 1=t{B=N½ �= 1=t{B=Nð Þzk½ �,

which transforms into the quadratic Equation A4:

B2zB {Bmax{kN {N =t½ �z(BmaxN =t)~0: ðA4Þ

Equation A4 has two positive roots, the smaller
of these two being relevant to the problem.

If we designate:

b~{Bmax{kN {N =t,

c~(BmaxN )=t,

then response rate at the stable equilibrium is:
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B~0:5 {bz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2{4c
ph i

, ðA5Þ

where B is in responses per hour.
Reinforcer rate in the stable equilibrium is

obtained by substitution of B from Equation
A5 into Equation A1, taking care to express B
and Bmax in the same units:

R~kB=(Bmax{B): ðA6Þ

APPENDIX B

MODELING RESULTS FROM
INDEPENDENT VR VR SCHEDULES

Equilibria of the Dynamical Model Based on
Herrnstein’s (1970) LOE Equation

The general form of a difference equation
for our models is Equation 2:

B�iz1~B�i zkt(B{B�i ):Dt,

where B*i+1 and B*i are the next and current
value of behavior; B is behavior at the steady
state; Dt is time step, kt is a dynamic constant.
At equilibrium B 5 B *.

Herrnstein’s (1970) LOE equations are the
same as Equations 6 and 7:

B1~(BmaxcR1)=(cR1zR2zk),

B2~(BmaxR2)=(cR1zR2zk):

Substituting the feedback function for rein-
forcer rate, or R 5 B/N, where N is the VR
schedule constant:

B1~(BmaxcR1)=(cB1=N1zB2=N2zk), ðB1Þ

B2~(BmaxB2=N2)=(cB1=N1zB2=N2zk): ðB2Þ

There are three obvious equilibrium solu-
tions related to the axes. The first one is B1 5
0, B2 5 0, and it is unstable. Second and third
are: B1 5 0, B2 5 Bmax 2 kN2 and B2 5 0, B1 5
Bmax 2 kN1. One of them is a stable equilib-
rium and is related to a rich alternative; the
other one is unstable. These hold for N1 ? cN2

and is shown by a phase portrait (Figure 11).
The condition for equilibrium with B1 . 0 and
B2 . 0 can be derived by dividing Equation B1
by B2:

B1=B2~c(B1=N1)=(B2=N2),

which simplifies into N1 5 cN2. This equilibri-
um is actually not a point, but a line
connecting two equilibria on B1-B2 axes. The
system starts with some initial condition, then
it moves to the equilibrium line preserving the
initial ratio of B1:B2 (see Figure 11). The value
of the bias cannot be sustained, so this
equilibrium cannot be observed in real behav-
ior.

Equilibria of the Dynamical Model Based on
Navakatikyan’s (2007) LOE Equation

As in the model considered above, we use
Equations 17 and 18 as steady-state LOE
equations:

B1~½BmaxcR1=(cR1zk)�:½kred=(kredzR2)�,

B2~½BmaxR2=(R2zk)�:½kred=(kredzcR1)�,

and, after substituting feedback function R 5

Table A1

Parameters and accuracy of the dynamical models for the VI VR experiments with negative slope
(Vaughan and Miller, 1984, Experiment 1).

Law of effect equations

Model parameter values & accuracy

Bmax k a kt VAC DBIC

Herrnstein, 1970 51.8 4.29 - 0.070 94.0 0
Davison & Hunter, 1976 80.8 2.62 0.34 0.025 94.6 1.8
Navakatikyan, 2007 51.8 4.29 - 0.070 94.0 0

Note. LOE equations are: Herrnstein’s (1970) and Navakatikyan’s (2007), Equation 5; Davison and Hunter’s (1976),
Equation 9. Bmax, k, c, a, and kt are model constants. VAC is percentage of variance accounted for. DBIC is the difference
between a model’s Bayesian information criterion and that for the best model. N 5 9 for all models. Data are averaged
over 3 pigeons per each of nine conditions.
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B/N, we obtain a pair of equations for the
dynamical system:

B1~½Bmax(B1=N1)=(B1=cN1zk)�
:½kred=(kredzB2=N2)�,

ðB3Þ

B2~½Bmax(B2=N2)=(B2=N2zk)�
:½kred=(kredzB1=cN1)�:

ðB4Þ

For the further analysis we set c 5 1, as its
value is absorbed by N1, and can be disregard-
ed for simplicity. We can recover bias from the
solutions by substituting back N1 for cN1.

There are three solutions located on re-
sponse rate (B1 and B2) axes. The first is B1 5
0, B2 5 0. The second and third are solutions
for B1 5 0 or B2 5 0. If B1 5 0, then B2 5 Bmax

2 kN2. If B2 5 0, then B1 5 Bmax 2 kN1. For the
fourth and fifth solutions a quadratic equation
has to be solved. Equations B3 and B4
transform into:

(B1zkN1)(B2zkredN2)~BmaxkredN2,

(B2zkN2)(B1zkredN2)~BmaxkredN1,

then in:

B1~BmaxkredN2=(B2zkredN2){kN1, ðB5Þ

B2~BmaxkredN1=(B1zkredN1){kN2: ðB6Þ

Substituting Equation B6 into Equation B5
we can solve quadratic Equation B7 for B1.

Once B1 is known, B2 is found from Equation
B6. Omitting intermediate stages we have the
following quadratic equation to solve for B1:

aB1
2zbB1zc~0, ðB7Þ

where coefficients a, b, c (valid only for
Equation B7) are as follows:

a~N2(kred{k),

b~Bmaxkred(N1{N2)zN1N2(k2
red{k2),

c~N1½Bmaxk:kredN1zk:kredN1N2(kred{k){Akred
2N2�:

Equation B7 has always one positive (B1 . 0,
B2 . 0) solution, which can be stable or
unstable (see Figure 12).
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Table B1

Dynamical models for the independent concurrent VR VR experiments of Herrnstein and
Loveland (1975), Mazur (1992), and Mazur and Ratti (1991).

Law of effect equations

Model parameter values & accuracy

Bmax k a or kred c, bias kt

B PL or P

VAC DBIC VAC DBIC

Herrnstein and Loveland,1975

Herrnstein, 1970 131.8 1.03 - 0.99 0.079 58.5 44.9 x 254.0 -
Davison & Hunter, 1976 146.6 0.65 0.76 0.81 0.342 88.9 16.5 x 80.5 -
Navakatikyan, 2007 144.6 0.22 0.69 0.80 0.267 94.4 0 80.8 -

Mazur, 1992

Herrnstein, 1970 138.0 0 - 1.00 0.229 - - 78.8 156.3 x

Davison & Hunter, 1976 145.5 0 0.50 0.96 0.666 - - 91.2 64.3 x

Navakatikyan, 2007 133.3 0.33 5.19 0.98 0.535 - - 95.1 0.0

Mazur & Ratti, 1991

Herrnstein, 1970 150.0 1.64 - 1.03 0.114 - - 83.1 28.0 x

Davison & Hunter, 1976 150.0 0.00 0.67 1.04 0.334 - - 91.2 2.7
Navakatikyan, 2007 84.8 0.13 1.34 0.97 0.192 - - 91.7 0

x Strong evidence against a model being the best model (DBIC . 10).
Note. Bmax, k, c, a, kred, and kt are model parameters. N 5 12, 110 and 45 for models based on the data of Herrnstein and

Loveland (1975), Mazur (1992), and Mazur and Ratti (1991), respectively. VAC is the percentage of variance accounted
for by B, PL,, and P (response rate, proportion of responses to the left, and proportion to the rich alternative,
respectively). DBIC is the difference between the Bayesian information criterion for a model and that of the best model.
In modeling Herrnstein and Loveland’s (1975) data, optimization was performed for response rate, thus VAC for PL, is
skewed and DBIC is meaningless. In modeling Mazur and Ratti’s (1991) data, the value of Bmax was constrained to # 150
responses per minute.

APPENDIX C

MODELING VAUGHAN’S (1981) MELIORATION EXPERIMENT
Table C1

Dynamical models of resident time spent responding on alternatives for Vaughan’s (1981)
experiment.

Birds

Model parameter values & accuracy

Tmax k a or kenh c, bias kt Impulse

T fr

VAC DBIC VAC

Herrnstein, 1970

1 15.7 0 1.202 0.060 1 68.3 108.2x 86.3
2 80.9 3.23 1.521 0.055 2 91.5 85.9
3 31.0 0 1.315 0.040 2 82.1 85.3
Median 82.1 85.9

Davison & Hunter, 1976

1 15.6 0 1.208 1.206 0.066 1.5 70.1 108.7 x 81.5
2 81.0 3.06 0.955 1.447 0.055 2 92.5 86.2
3 31.2 0 1.068 1.341 0.050 2 82.3 84.4
Median 82.3 84.4

Navakatikyan, 2007

1 1116.6 0.06 0.004 1.58 0.040 1.5 86.7 0 83.4
2 77.0 0.95 0.404 1.69 0.049 2.5 95.3 85.3
3 63.8 0.21 0.312 1.13 0.025 1.5 96.9 88.0
Median 95.3 85.3

x Strong evidence against a model being the best model (DBIC . 10).
Note. N 5 83 for the fraction of time allocated to the right (fr). Tmax, k, c, a, kred, and kt are model parameters. Impulse is

an addition to the right residence time, initiating the transition to the states b, b1 or b2, in s. Other abbreviations are as in
Table B1. N 5 6 for all models of time spent responding (T).
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APPENDIX D

EXPERIMENTS WITH EQUAL LOCAL REINFORCER RATES
Table D1

Dynamical models of the resident time in independent concurrent VI VI schedules with equal
local reinforcer rates (Herrnstein & Vaughan, 1980; Vaughan, 1982).

Law of effect equations Bird

Model parameter values & accuracy

k a or kred c, bias

fr

VAC DBIC

Herrnstein, 1970 1 1.73 - 1.01 2508.0 8.8+

2 5.67 – 0.97 66.1
3 0 - 0.97 76.0

Median 66.1
Davison & Hunter, 1976 1 1.01 0.372 1.35 3.6 0

2 0.79 0.988 1.05 74.2
3 28.80 0.914 0.92 93.3

Median 74.2
Navakatikyan, 2007 1 0 1.284 1.29 3.5 0.3

2 0.96 0.784 0.99 74.0
3 0 0.034 0.93 93.0

Median 74.0

+ Evidence against a model being the best model (DBIC . 6).
Note. N 5 5. fr is the fraction of time allocated to the right. Other abbreviations are as in Table B1. In all models we set

Bmax 5 50, and kt 5 0.05.
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